Multivariate Modelling of Non-Stationary Economic Time Series

John Hunter,Simon P. Burke,Alessandra Canepa

Multivariate Modelling of Non-Stationary Economic Time Series
Format
Paperback
Publisher
Palgrave Macmillan
Country
United Kingdom
Published
24 August 2017
Pages
502
ISBN
9780230243316

Multivariate Modelling of Non-Stationary Economic Time Series

John Hunter,Simon P. Burke,Alessandra Canepa

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

This book examines conventional time series in the context of stationary data prior to a discussion of cointegration, with a focus on multivariate models. The authors provide a detailed and extensive study of impulse responses and forecasting in the stationary and non-stationary context, considering small sample correction, volatility and the impact of different orders of integration. Models with expectations are considered along with alternate methods such as Singular Spectrum Analysis (SSA), the Kalman Filter and Structural Time Series, all in relation to cointegration. Using single equations methods to develop topics, and as examples of the notion of cointegration, Burke, Hunter, and Canepa provide direction and guidance to the now vast literature facing students and graduate economists.

This item is not currently in-stock. It can be ordered online and is expected to ship in 7-14 days

Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.

Sign in or become a Readings Member to add this title to a wishlist.