Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Modeling the Lattice Parameters of Solid Solution Alloys
Paperback

Modeling the Lattice Parameters of Solid Solution Alloys

$152.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

In this book, models for the prediction of lattice parameters of substitutional and interstitial solid solutions as a function of concentration and temperature are presented. For substitutional solid solutions, the method is based on the hypothesis that the measured lattice parameter versus concentration is the average of the interatomic spacing within a selected region of a Bravais lattice. The model is applied on Ni-Cu and Ge-Si solid solutions. For the interstitial solid solution of the Fe-C system, the method is based on the assumption that the change in lattice parameter of the pure Fe phase is due to the occupation by carbon atoms to the octahedral holes in the fcc austenite; and bct martensite. The model of lattice parameter versus temperature for both substitutional and interstitial solid solutions is based on the relative change in length and vacancy concentration at lattice sites that are in thermal equilibrium. Combinations of both models then facilitate the calculation of lattice parameters as a function of concentration and temperature. The results are discussed accordingly.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Anchor Academic Publishing
Date
11 January 2017
Pages
74
ISBN
9783960670988

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

In this book, models for the prediction of lattice parameters of substitutional and interstitial solid solutions as a function of concentration and temperature are presented. For substitutional solid solutions, the method is based on the hypothesis that the measured lattice parameter versus concentration is the average of the interatomic spacing within a selected region of a Bravais lattice. The model is applied on Ni-Cu and Ge-Si solid solutions. For the interstitial solid solution of the Fe-C system, the method is based on the assumption that the change in lattice parameter of the pure Fe phase is due to the occupation by carbon atoms to the octahedral holes in the fcc austenite; and bct martensite. The model of lattice parameter versus temperature for both substitutional and interstitial solid solutions is based on the relative change in length and vacancy concentration at lattice sites that are in thermal equilibrium. Combinations of both models then facilitate the calculation of lattice parameters as a function of concentration and temperature. The results are discussed accordingly.

Read More
Format
Paperback
Publisher
Anchor Academic Publishing
Date
11 January 2017
Pages
74
ISBN
9783960670988