Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book presents a link between modem analysis and topology. Based upon classical Morse theory it develops the finite dimensional analogue of Floer homology which, in the recent years, has come to play a significant role in geometry. Morse homology naturally arises from the gradient dynamical system associated with a Morse function. The underlying chain complex, already considered by Thom, Smale, Milnor and Witten, analogously forms the basic ingredient of Floer’s homology theory. This concept of relative Morse theory in combination with Conley’s continuation principle lends itself to an axiomatic homology functor. The present approach consistenly employs analytic methods in strict analogy with the construction of Floers homology groups. That is a calculus for certain non-linear Fredholm operators on Banach manifolds which here are curve spaces and within which the solution sets form the focal moduli spaces. The book offers a systematic and comprehensive presentation of the analysis of these moduli spaces. All theorems within this analytic schedule comprising Fredholm theory, regularity and compactness results, gluing and orientation analysis, together with their proofs and prerequisite material, are examined here in detail. This exposition thus brings a methodological insight into present-day analysis.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book presents a link between modem analysis and topology. Based upon classical Morse theory it develops the finite dimensional analogue of Floer homology which, in the recent years, has come to play a significant role in geometry. Morse homology naturally arises from the gradient dynamical system associated with a Morse function. The underlying chain complex, already considered by Thom, Smale, Milnor and Witten, analogously forms the basic ingredient of Floer’s homology theory. This concept of relative Morse theory in combination with Conley’s continuation principle lends itself to an axiomatic homology functor. The present approach consistenly employs analytic methods in strict analogy with the construction of Floers homology groups. That is a calculus for certain non-linear Fredholm operators on Banach manifolds which here are curve spaces and within which the solution sets form the focal moduli spaces. The book offers a systematic and comprehensive presentation of the analysis of these moduli spaces. All theorems within this analytic schedule comprising Fredholm theory, regularity and compactness results, gluing and orientation analysis, together with their proofs and prerequisite material, are examined here in detail. This exposition thus brings a methodological insight into present-day analysis.