Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Lineare Algebra und Analytische Geometrie
Paperback

Lineare Algebra und Analytische Geometrie

$138.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

  1. 2 Die euklidische Normalform einer Quadrik 18. 3 Euklidische Quadrikengeometrie 18. 4 Metrische Klassifikation der Quadriken im E2 und E3 Kapitel 6: Projektive Geometrie 19 Der n-dimensionale projektive Raum 19. 1 Motivation 2 19. 2 Das Leitbild der projektiven Ebene P 19. 3 Der n-dimensionale projektive Raum pn 19. 4 Projektive Unterraume 19. 5 Dimensionssatz fUr projektive Unterraume 19. 6 Projektive Koordinaten 19. 7 Gleichungen und Parameterdarstellungen projektiver Unterraume 19. 8 Projektive Koordinatentransformationen 20 Projektive Abbildungen 20. 1 Problemstellung 20. 2 Eigenschaften projektiver Abbildungen 20. 3 Koordinatendarstellung projektiver Abbildungen 20. 4 Projektive Selbstabbildungen 20. 5 . Projektivitaten und Perspektivitaten 20. 6 Projektionen 20. 7 Das Doppelverhaltnis 20. 8 Beziehungen zwischen projektiven und affinen Raumen 21 _…:: D;.::: a: ;s: . ., . .: D: .;u:: .: a:: . l=i. .: t. =a: . .: t:: s: ., sp: .: r:, .;1: . .: - n:: z=i. t:: p 21. 1 Gru dbegriffe der dual en Vektorraume 21. 2 Das Dualitatsprinzip der linearen Algebra 21. 3 Das Dualitatsprinzip der projektiven Geometrie 21. 4 Hyperebenenkoordinaten 21. 5 Das Doppelverhaltnis von Hyperebenen 21. 6 Dualit t bei projektiven Abbildungen 22 Kollineationen und Korrelationen 22. 1 Kollineationen 22. 2 Der v. STAUDTsche Satz 22. 3 Korrelationen 22. 4 Polarsysteme und Nullsysteme 23 Standardsatze der projektiven Ebene p2 23. 1 Satz von PAPPUS. Vollstandiges Vierseit, vollstandiges Viereck 23. 2 Der Satz von DESARGUES 23. 3 Der Satz von PAPPUS-PASCAL 24 Projektive Quadrikentheorie 24. 1 Begriff der Quadrik im pn 24.
Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Springer Fachmedien Wiesbaden
Country
Germany
Date
1 January 1981
Pages
316
ISBN
9783528130589

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

  1. 2 Die euklidische Normalform einer Quadrik 18. 3 Euklidische Quadrikengeometrie 18. 4 Metrische Klassifikation der Quadriken im E2 und E3 Kapitel 6: Projektive Geometrie 19 Der n-dimensionale projektive Raum 19. 1 Motivation 2 19. 2 Das Leitbild der projektiven Ebene P 19. 3 Der n-dimensionale projektive Raum pn 19. 4 Projektive Unterraume 19. 5 Dimensionssatz fUr projektive Unterraume 19. 6 Projektive Koordinaten 19. 7 Gleichungen und Parameterdarstellungen projektiver Unterraume 19. 8 Projektive Koordinatentransformationen 20 Projektive Abbildungen 20. 1 Problemstellung 20. 2 Eigenschaften projektiver Abbildungen 20. 3 Koordinatendarstellung projektiver Abbildungen 20. 4 Projektive Selbstabbildungen 20. 5 . Projektivitaten und Perspektivitaten 20. 6 Projektionen 20. 7 Das Doppelverhaltnis 20. 8 Beziehungen zwischen projektiven und affinen Raumen 21 _…:: D;.::: a: ;s: . ., . .: D: .;u:: .: a:: . l=i. .: t. =a: . .: t:: s: ., sp: .: r:, .;1: . .: - n:: z=i. t:: p 21. 1 Gru dbegriffe der dual en Vektorraume 21. 2 Das Dualitatsprinzip der linearen Algebra 21. 3 Das Dualitatsprinzip der projektiven Geometrie 21. 4 Hyperebenenkoordinaten 21. 5 Das Doppelverhaltnis von Hyperebenen 21. 6 Dualit t bei projektiven Abbildungen 22 Kollineationen und Korrelationen 22. 1 Kollineationen 22. 2 Der v. STAUDTsche Satz 22. 3 Korrelationen 22. 4 Polarsysteme und Nullsysteme 23 Standardsatze der projektiven Ebene p2 23. 1 Satz von PAPPUS. Vollstandiges Vierseit, vollstandiges Viereck 23. 2 Der Satz von DESARGUES 23. 3 Der Satz von PAPPUS-PASCAL 24 Projektive Quadrikentheorie 24. 1 Begriff der Quadrik im pn 24.
Read More
Format
Paperback
Publisher
Springer Fachmedien Wiesbaden
Country
Germany
Date
1 January 1981
Pages
316
ISBN
9783528130589