Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Time Series Forecasting using Deep Learning
Paperback

Time Series Forecasting using Deep Learning

$104.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Deep Learning which comprises Deep Neural Networks (DNNs) has achieved excellent success in image classification, speech recognition, etc. But DNNs suffer a lot of challenges for time series forecasting (TSF) because most of the time-series data are nonlinear in nature and highly dynamic in behavior. TSF has a great impact on our socio-economic environment. Hence, to deal with these challenges the DNN model needs to be redefined, and keeping this in mind, data pre-processing, network architecture and network parameters are needed to be considered before feeding the data into DNN models. Data normalization is the basic data pre-processing technique form which learning is to be done. The effectiveness of TSF heavily depends on the data normalization technique. In this Book, different normalization methods are used on time series data before feeding the data into the DNN model and we try to find out the impact of each normalization technique on DNN for TSF. We also propose the Deep Recurrent Neural Network (DRNN) to predict the closing index of the Bombay Stock Exchange (BSE) and the New York Stock Exchange (NYSE) by using time series data.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
LAP Lambert Academic Publishing
Date
15 May 2020
Pages
52
ISBN
9783330046160

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Deep Learning which comprises Deep Neural Networks (DNNs) has achieved excellent success in image classification, speech recognition, etc. But DNNs suffer a lot of challenges for time series forecasting (TSF) because most of the time-series data are nonlinear in nature and highly dynamic in behavior. TSF has a great impact on our socio-economic environment. Hence, to deal with these challenges the DNN model needs to be redefined, and keeping this in mind, data pre-processing, network architecture and network parameters are needed to be considered before feeding the data into DNN models. Data normalization is the basic data pre-processing technique form which learning is to be done. The effectiveness of TSF heavily depends on the data normalization technique. In this Book, different normalization methods are used on time series data before feeding the data into the DNN model and we try to find out the impact of each normalization technique on DNN for TSF. We also propose the Deep Recurrent Neural Network (DRNN) to predict the closing index of the Bombay Stock Exchange (BSE) and the New York Stock Exchange (NYSE) by using time series data.

Read More
Format
Paperback
Publisher
LAP Lambert Academic Publishing
Date
15 May 2020
Pages
52
ISBN
9783330046160