Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Data Processing with Optimus: Supercharge big data preparation tasks for analytics and machine learning with Optimus using Dask and PySpark
Paperback

Data Processing with Optimus: Supercharge big data preparation tasks for analytics and machine learning with Optimus using Dask and PySpark

$105.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Written by the core Optimus team, this comprehensive guide will help you to understand how Optimus improves the whole data processing landscape

Key Features

Load, merge, and save small and big data efficiently with Optimus Learn Optimus functions for data analytics, feature engineering, machine learning, cross-validation, and NLP Discover how Optimus improves other data frame technologies and helps you speed up your data processing tasks

Book DescriptionOptimus is a Python library that works as a unified API for data cleaning, processing, and merging data. It can be used for handling small and big data on your local laptop or on remote clusters using CPUs or GPUs.

The book begins by covering the internals of Optimus and how it works in tandem with the existing technologies to serve your data processing needs. You’ll then learn how to use Optimus for loading and saving data from text data formats such as CSV and JSON files, exploring binary files such as Excel, and for columnar data processing with Parquet, Avro, and OCR. Next, you’ll get to grips with the profiler and its data types - a unique feature of Optimus Dataframe that assists with data quality. You’ll see how to use the plots available in Optimus such as histogram, frequency charts, and scatter and box plots, and understand how Optimus lets you connect to libraries such as Plotly and Altair. You’ll also delve into advanced applications such as feature engineering, machine learning, cross-validation, and natural language processing functions and explore the advancements in Optimus. Finally, you’ll learn how to create data cleaning and transformation functions and add a hypothetical new data processing engine with Optimus.

By the end of this book, you’ll be able to improve your data science workflow with Optimus easily.

What you will learn

Use over 100 data processing functions over columns and other string-like values Reshape and pivot data to get the output in the required format Find out how to plot histograms, frequency charts, scatter plots, box plots, and more Connect Optimus with popular Python visualization libraries such as Plotly and Altair Apply string clustering techniques to normalize strings Discover functions to explore, fix, and remove poor quality data Use advanced techniques to remove outliers from your data Add engines and custom functions to clean, process, and merge data

Who this book is forThis book is for Python developers who want to explore, transform, and prepare big data for machine learning, analytics, and reporting using Optimus, a unified API to work with Pandas, Dask, cuDF, Dask-cuDF, Vaex, and Spark. Although not necessary, beginner-level knowledge of Python will be helpful. Basic knowledge of the CLI is required to install Optimus and its requirements. For using GPU technologies, you’ll need an NVIDIA graphics card compatible with NVIDIA’s RAPIDS library, which is compatible with Windows 10 and Linux.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Packt Publishing Limited
Country
United Kingdom
Date
3 September 2021
Pages
300
ISBN
9781801079563

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Written by the core Optimus team, this comprehensive guide will help you to understand how Optimus improves the whole data processing landscape

Key Features

Load, merge, and save small and big data efficiently with Optimus Learn Optimus functions for data analytics, feature engineering, machine learning, cross-validation, and NLP Discover how Optimus improves other data frame technologies and helps you speed up your data processing tasks

Book DescriptionOptimus is a Python library that works as a unified API for data cleaning, processing, and merging data. It can be used for handling small and big data on your local laptop or on remote clusters using CPUs or GPUs.

The book begins by covering the internals of Optimus and how it works in tandem with the existing technologies to serve your data processing needs. You’ll then learn how to use Optimus for loading and saving data from text data formats such as CSV and JSON files, exploring binary files such as Excel, and for columnar data processing with Parquet, Avro, and OCR. Next, you’ll get to grips with the profiler and its data types - a unique feature of Optimus Dataframe that assists with data quality. You’ll see how to use the plots available in Optimus such as histogram, frequency charts, and scatter and box plots, and understand how Optimus lets you connect to libraries such as Plotly and Altair. You’ll also delve into advanced applications such as feature engineering, machine learning, cross-validation, and natural language processing functions and explore the advancements in Optimus. Finally, you’ll learn how to create data cleaning and transformation functions and add a hypothetical new data processing engine with Optimus.

By the end of this book, you’ll be able to improve your data science workflow with Optimus easily.

What you will learn

Use over 100 data processing functions over columns and other string-like values Reshape and pivot data to get the output in the required format Find out how to plot histograms, frequency charts, scatter plots, box plots, and more Connect Optimus with popular Python visualization libraries such as Plotly and Altair Apply string clustering techniques to normalize strings Discover functions to explore, fix, and remove poor quality data Use advanced techniques to remove outliers from your data Add engines and custom functions to clean, process, and merge data

Who this book is forThis book is for Python developers who want to explore, transform, and prepare big data for machine learning, analytics, and reporting using Optimus, a unified API to work with Pandas, Dask, cuDF, Dask-cuDF, Vaex, and Spark. Although not necessary, beginner-level knowledge of Python will be helpful. Basic knowledge of the CLI is required to install Optimus and its requirements. For using GPU technologies, you’ll need an NVIDIA graphics card compatible with NVIDIA’s RAPIDS library, which is compatible with Windows 10 and Linux.

Read More
Format
Paperback
Publisher
Packt Publishing Limited
Country
United Kingdom
Date
3 September 2021
Pages
300
ISBN
9781801079563