Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Handbook of Topological Fixed Point Theory
Hardback

Handbook of Topological Fixed Point Theory

$407.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Fixed point theory concerns itself with a very simple, and basic, mathematical setting. For a functionf that has a setX as bothdomain and range, a ?xed point off isa pointx ofX for whichf(x)=x. Two fundamental theorems concerning ?xed points are those of Banach and of Brouwer. In Banach’s theorem, X is a complete metric space with metricd andf:X?X is required to be a contraction, that is, there must existL< 1 such thatd(f(x),f(y))?Ld(x,y) for allx,y?X. Theconclusion is thatf has a ?xed point, in fact exactly one of them. Brouwer'stheorem requiresX to betheclosed unit ball in a Euclidean space and f:X?X to be a map, that is, a continuous function. Again we can conclude that f has a ?xed point. But in this case the set of?xed points need not be a single point, in fact every closed nonempty subset of the unit ball is the ?xed point set for some map. ThemetriconX in Banach'stheorem is used in the crucialhypothesis about the function, that it is a contraction. The unit ball in Euclidean space is also metric, and the metric topology determines the continuity of the function, but the focus of Brouwer’s theorem is on topological characteristics of the unit ball, in particular that it is a contractible ?nite polyhedron. The theorems of Banach and Brouwer illustrate the di?erence between the two principal branches of ?xed point theory: metric ?xed point theory and topological ?xed point theory.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Springer-Verlag New York Inc.
Country
United States
Date
15 December 2011
Pages
972
ISBN
9781402032219

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Fixed point theory concerns itself with a very simple, and basic, mathematical setting. For a functionf that has a setX as bothdomain and range, a ?xed point off isa pointx ofX for whichf(x)=x. Two fundamental theorems concerning ?xed points are those of Banach and of Brouwer. In Banach’s theorem, X is a complete metric space with metricd andf:X?X is required to be a contraction, that is, there must existL< 1 such thatd(f(x),f(y))?Ld(x,y) for allx,y?X. Theconclusion is thatf has a ?xed point, in fact exactly one of them. Brouwer'stheorem requiresX to betheclosed unit ball in a Euclidean space and f:X?X to be a map, that is, a continuous function. Again we can conclude that f has a ?xed point. But in this case the set of?xed points need not be a single point, in fact every closed nonempty subset of the unit ball is the ?xed point set for some map. ThemetriconX in Banach'stheorem is used in the crucialhypothesis about the function, that it is a contraction. The unit ball in Euclidean space is also metric, and the metric topology determines the continuity of the function, but the focus of Brouwer’s theorem is on topological characteristics of the unit ball, in particular that it is a contractible ?nite polyhedron. The theorems of Banach and Brouwer illustrate the di?erence between the two principal branches of ?xed point theory: metric ?xed point theory and topological ?xed point theory.

Read More
Format
Hardback
Publisher
Springer-Verlag New York Inc.
Country
United States
Date
15 December 2011
Pages
972
ISBN
9781402032219