Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Spatial and Temporal Dynamics of Cyanotoxins and Their Relation to Other Water Quality Variables in Upper Klamath Lake, Oregon, 2007-09
Paperback

Spatial and Temporal Dynamics of Cyanotoxins and Their Relation to Other Water Quality Variables in Upper Klamath Lake, Oregon, 2007-09

$36.99
Sign in or become a Readings Member to add this title to your wishlist.

Phytoplankton blooms dominated by cyanobacteria that occur annually in hypereutrophic Upper Klamath Lake, Oregon, produce microcystins at concentrations that may contribute to the decline in populations of endangered Lost River (Deltistes luxatus) and shortnose (Chasmistes brevirostris) suckers. During 2007-09, water samples were collected from Upper Klamath Lake to determine the presence and concentrations of microcystins and cylindrospermopsins and to relate the spatial and temporal occurrences of microcystins to water quality and other environmental variables. Samples were analyzed for intracellular (particulate) and extracellular (dissolved) microcystins and cylindrospermopsins using enzyme-linked immunosorbent assays (ELISA). Samples contained the highest and most variable concentrations of microcystins in 2009, the year in which an earlier and heavier Aphanizomenon flos-aquae-dominated phytoplankton bloom occurred. Concentrations were lowest in 2008 when the bloom was lighter, overall, and delayed by nearly 1 month. Microcystins occurred primarily in dissolved and large (> 63 m) particulate forms in all years of the study, and overall, concentrations were highest at MDT (the deepest site in the study) and HDB, although HDB was sampled only in 2007 and MDT was not sampled in 2008. Comparisons among daily median total microcystin concentrations; chlorophyll a concentrations; total, dissolved, and particulate nutrient concentrations; and nutrient ratios measured in 2009 and between 2007 and 2009 indicate that microcystin concentrations generally increase following the decline of the first A. flos-aquae-dominated bloom of each season in response to an increase in bioavailable nitrogen and phosphorus. Nitrogen fixation by A. flos-aquae early in the sample season appears to provide new nitrogen for growth of toxigenic Microcystis aeruginosa, whereas, later in the season, these species appear to co-exist. Understanding the ecological interactions between these species may be important for predicting periods of elevated cyanotoxin concentrations and has important implications for management of this lake.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Bibliogov
Country
United States
Date
7 March 2013
Pages
48
ISBN
9781288852680

Phytoplankton blooms dominated by cyanobacteria that occur annually in hypereutrophic Upper Klamath Lake, Oregon, produce microcystins at concentrations that may contribute to the decline in populations of endangered Lost River (Deltistes luxatus) and shortnose (Chasmistes brevirostris) suckers. During 2007-09, water samples were collected from Upper Klamath Lake to determine the presence and concentrations of microcystins and cylindrospermopsins and to relate the spatial and temporal occurrences of microcystins to water quality and other environmental variables. Samples were analyzed for intracellular (particulate) and extracellular (dissolved) microcystins and cylindrospermopsins using enzyme-linked immunosorbent assays (ELISA). Samples contained the highest and most variable concentrations of microcystins in 2009, the year in which an earlier and heavier Aphanizomenon flos-aquae-dominated phytoplankton bloom occurred. Concentrations were lowest in 2008 when the bloom was lighter, overall, and delayed by nearly 1 month. Microcystins occurred primarily in dissolved and large (> 63 m) particulate forms in all years of the study, and overall, concentrations were highest at MDT (the deepest site in the study) and HDB, although HDB was sampled only in 2007 and MDT was not sampled in 2008. Comparisons among daily median total microcystin concentrations; chlorophyll a concentrations; total, dissolved, and particulate nutrient concentrations; and nutrient ratios measured in 2009 and between 2007 and 2009 indicate that microcystin concentrations generally increase following the decline of the first A. flos-aquae-dominated bloom of each season in response to an increase in bioavailable nitrogen and phosphorus. Nitrogen fixation by A. flos-aquae early in the sample season appears to provide new nitrogen for growth of toxigenic Microcystis aeruginosa, whereas, later in the season, these species appear to co-exist. Understanding the ecological interactions between these species may be important for predicting periods of elevated cyanotoxin concentrations and has important implications for management of this lake.

Read More
Format
Paperback
Publisher
Bibliogov
Country
United States
Date
7 March 2013
Pages
48
ISBN
9781288852680