Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Combinatorics is mathematics of enumeration, existence, construction, and optimization questions concerning finite sets. This text focuses on the first three types of questions and covers basic counting and existence principles, distributions, generating functions, recurrence relations, Polya theory, combinatorial designs, error correcting codes, partially ordered sets, and selected applications to graph theory including the enumeration of trees, the chromatic polynomial, and introductory Ramsey theory. The only prerequisites are single-variable calculus and familiarity with sets and basic proof techniques. It is flexible enough to be used for undergraduate courses in combinatorics, second courses in discrete mathematics, introductory graduate courses in applied mathematics programs, as well as for independent study or reading courses. It also features approximately 350 reading questions spread throughout its eight chapters. These questions provide checkpoints for learning and prepare the reader for the end-of-section exercises of which there are over 470.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Combinatorics is mathematics of enumeration, existence, construction, and optimization questions concerning finite sets. This text focuses on the first three types of questions and covers basic counting and existence principles, distributions, generating functions, recurrence relations, Polya theory, combinatorial designs, error correcting codes, partially ordered sets, and selected applications to graph theory including the enumeration of trees, the chromatic polynomial, and introductory Ramsey theory. The only prerequisites are single-variable calculus and familiarity with sets and basic proof techniques. It is flexible enough to be used for undergraduate courses in combinatorics, second courses in discrete mathematics, introductory graduate courses in applied mathematics programs, as well as for independent study or reading courses. It also features approximately 350 reading questions spread throughout its eight chapters. These questions provide checkpoints for learning and prepare the reader for the end-of-section exercises of which there are over 470.