Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Equations occur in many computer applications, such as symbolic compu tation, functional programming, abstract data type specifications, program verification, program synthesis, and automated theorem proving. Rewrite systems are directed equations used to compute by replacing subterms in a given formula by equal terms until a simplest form possible, called a normal form, is obtained. The theory of rewriting is concerned with the compu tation of normal forms. We shall study the use of rewrite techniques for reasoning about equations. Reasoning about equations may, for instance, involve deciding whether an equation is a logical consequence of a given set of equational axioms. Convergent rewrite systems are those for which the rewriting process de fines unique normal forms. They can be thought of as non-deterministic functional programs and provide reasonably efficient decision procedures for the underlying equational theories. The Knuth-Bendix completion method provides a means of testing for convergence and can often be used to con struct convergent rewrite systems from non-convergent ones. We develop a proof-theoretic framework for studying completion and related rewrite based proof procedures. We shall view theorem provers as proof transformation procedures, so as to express their essential properties as proof normalization theorems.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Equations occur in many computer applications, such as symbolic compu tation, functional programming, abstract data type specifications, program verification, program synthesis, and automated theorem proving. Rewrite systems are directed equations used to compute by replacing subterms in a given formula by equal terms until a simplest form possible, called a normal form, is obtained. The theory of rewriting is concerned with the compu tation of normal forms. We shall study the use of rewrite techniques for reasoning about equations. Reasoning about equations may, for instance, involve deciding whether an equation is a logical consequence of a given set of equational axioms. Convergent rewrite systems are those for which the rewriting process de fines unique normal forms. They can be thought of as non-deterministic functional programs and provide reasonably efficient decision procedures for the underlying equational theories. The Knuth-Bendix completion method provides a means of testing for convergence and can often be used to con struct convergent rewrite systems from non-convergent ones. We develop a proof-theoretic framework for studying completion and related rewrite based proof procedures. We shall view theorem provers as proof transformation procedures, so as to express their essential properties as proof normalization theorems.