Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
An ideal textbook for an introductory course on quantitative methods for social scientists
Data Analysis for Social Science provides a friendly introduction to the statistical concepts and programming skills needed to conduct and evaluate social scientific studies. Using plain language and assuming no prior knowledge of statistics and coding, the book provides a step-by-step guide to analyzing real-world data with the statistical program R for the purpose of answering a wide range of substantive social science questions. It teaches not only how to perform the analyses but also how to interpret results and identify strengths and limitations. This one-of-a-kind textbook includes supplemental materials to accommodate students with minimal knowledge of math and clearly identifies sections with more advanced material so that readers can skip them if they so choose.
A more accessible version of Kosuke Imai’s Quantitative Social Science Analyzes real-world data using the powerful, open-sourced statistical program R, which is free for everyone to use Teaches how to measure, predict, and explain quantities of interest based on data Shows how to infer population characteristics using survey research, predict outcomes using linear models, and estimate causal effects with and without randomized experiments Assumes no prior knowledge of statistics or coding Specifically designed to accommodate students with a variety of math backgrounds Provides cheatsheets of statistical concepts and R code
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
An ideal textbook for an introductory course on quantitative methods for social scientists
Data Analysis for Social Science provides a friendly introduction to the statistical concepts and programming skills needed to conduct and evaluate social scientific studies. Using plain language and assuming no prior knowledge of statistics and coding, the book provides a step-by-step guide to analyzing real-world data with the statistical program R for the purpose of answering a wide range of substantive social science questions. It teaches not only how to perform the analyses but also how to interpret results and identify strengths and limitations. This one-of-a-kind textbook includes supplemental materials to accommodate students with minimal knowledge of math and clearly identifies sections with more advanced material so that readers can skip them if they so choose.
A more accessible version of Kosuke Imai’s Quantitative Social Science Analyzes real-world data using the powerful, open-sourced statistical program R, which is free for everyone to use Teaches how to measure, predict, and explain quantities of interest based on data Shows how to infer population characteristics using survey research, predict outcomes using linear models, and estimate causal effects with and without randomized experiments Assumes no prior knowledge of statistics or coding Specifically designed to accommodate students with a variety of math backgrounds Provides cheatsheets of statistical concepts and R code