Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Modern radar, telecommunication, sonar, and radio-astronomy systems use integrated systems, complex signals, and signal processing methods exten sively. These systems require the development of new, more efficient systems. One of the major ways to improve radar and sonar systems is to use multichannel systems, the most promising of which employ space-time signal processing. In the last few years the intensive growth in electronics, informa tion processing techniques, microwave and laser technology, electrooptics and holography, acoustics, and optoelectronics have resulted in new scientific and technological research fronts. One of these is the theory and technology of electrooptical array antennas-a new class of receiving antennas whose pat tern is controlled by means of coherent optics and holography. Electrooptical array theory and technology have been involved in the study of the power, resolution, and range characteristics of arrays with various coherent opti cal processors. The practical applications of these systems and methods for building them using contemporary optoelectronics have also been studied.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Modern radar, telecommunication, sonar, and radio-astronomy systems use integrated systems, complex signals, and signal processing methods exten sively. These systems require the development of new, more efficient systems. One of the major ways to improve radar and sonar systems is to use multichannel systems, the most promising of which employ space-time signal processing. In the last few years the intensive growth in electronics, informa tion processing techniques, microwave and laser technology, electrooptics and holography, acoustics, and optoelectronics have resulted in new scientific and technological research fronts. One of these is the theory and technology of electrooptical array antennas-a new class of receiving antennas whose pat tern is controlled by means of coherent optics and holography. Electrooptical array theory and technology have been involved in the study of the power, resolution, and range characteristics of arrays with various coherent opti cal processors. The practical applications of these systems and methods for building them using contemporary optoelectronics have also been studied.