The Stability and Control of Discrete Processes

J.P. LaSalle

The Stability and Control of Discrete Processes
Format
Paperback
Publisher
Springer-Verlag New York Inc.
Country
United States
Published
5 November 1986
Pages
150
ISBN
9780387964119

The Stability and Control of Discrete Processes

J.P. LaSalle

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Professor J. P. LaSalle died on July 7, 1983 at the age of 67. The present book is being published posthumously with the careful assistance of Kenneth Meyer, one of the students of Professor LaSalle. It is appropriate that the last publi cation of Professor LaSalle should be on a subject which con tains many interesting ideas, is very useful in applications and can be understood at an undergraduate level. In addition to making many significant contributions at the research level to differential equations and control theory, he was an excel lent teacher and had the ability to make sophisticated con cepts appear to be very elementary. Two examples of this are his books with N. Hasser and J. Sullivan on analysis published by Ginn and Co. , 1949 and 1964, and the book with S. Lefschetz on stability by Liapunov’s second method published by Academic Press, 1961. Thus, it is very fitting that the present volume could be completed. Jack K. Hale Kenneth R. Meyer TABLE OF CONTENTS page 1. Introduction 1 2. Liapunov’s direct method 7 3. Linear systems Xl = Ax. 13 4. An algorithm for computing An. 19 5. Acharacterization of stable matrices. Computational criteria. 24 6. Liapunovls characterization of stable matrices. A Liapunov function for Xl = Ax. 32 7. Stability by the linear approximation. 38 8. The general solution of Xl = Ax. The Jordan Canonical Form. 40 9. Higher order equations. The general solution of ~(z)y = O.

This item is not currently in-stock. It can be ordered online and is expected to ship in 7-14 days

Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.

Sign in or become a Readings Member to add this title to a wishlist.