Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
The Stereotaxic Brain Atlas of the Egyptian Fruit Bat provides the first stereotaxic atlas of the brain of the Egyptian fruit bat (Rousettus aegyptiacus), an emerging model in neuroscience. This atlas contains coronal brain sections stained with cresyl violet (Nissl), AChE, and Parvalbumin - all stereotaxically calibrated. It will serve the needs of any neuroscientist who wishes to work with these bats - allowing to precisely target specific brain areas for electrophysiology, optogenetics, pharmacology, and lesioning. More broadly, this atlas will be useful to all neuroscientists working with bats, as it delineates many brain regions that were not delineated so far in any bat species. Finally, this atlas will provide a useful resource for researchers interested in comparative neuroanatomy of the mammalian brain.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
The Stereotaxic Brain Atlas of the Egyptian Fruit Bat provides the first stereotaxic atlas of the brain of the Egyptian fruit bat (Rousettus aegyptiacus), an emerging model in neuroscience. This atlas contains coronal brain sections stained with cresyl violet (Nissl), AChE, and Parvalbumin - all stereotaxically calibrated. It will serve the needs of any neuroscientist who wishes to work with these bats - allowing to precisely target specific brain areas for electrophysiology, optogenetics, pharmacology, and lesioning. More broadly, this atlas will be useful to all neuroscientists working with bats, as it delineates many brain regions that were not delineated so far in any bat species. Finally, this atlas will provide a useful resource for researchers interested in comparative neuroanatomy of the mammalian brain.